
Direct Transformation of Unprotected Sugars to Aryl 1-Thio-�-glycosides
in Aqueous Media Using 2-Chloro-1,3-dimethylimidazolinium Chloride

Tomonari Tanaka, Takeshi Matsumoto, Masato Noguchi, Atsushi Kobayashi, and Shin-ichiro Shoda�

Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University,
6-6-11-514 Aoba, Sendai 980-8579

(Received February 25, 2009; CL-090193; E-mail: shoda@poly.che.tohoku.ac.jp)

Aryl 1-thioglycosides have directly been synthesized in
good yields from the corresponding unprotected sugars and
thiols without protection of the hydroxy groups by using 2-
chloro-1,3-dimethylimidazolinium chloride (DMC) as dehydra-
tive condensing agent. The reaction proceeded in a mixed sol-
vent of water and acetonitrile under mild reaction conditions,
leading to the predominant formation of �-anomers.

There has been a growing research interest in thioglycosides
in carbohydrate chemistry.1 Aryl 1-thioglycosides are useful pre-
cursors of glycosyl fluorides, glycosyl bromide, and glycosyl
sulfoxides.2 Thioglycoside derivatives are also employed as ef-
ficient glycosyl donors or glycosyl acceptors for chemical or en-
zymatic glycosylations.3 In addition, they are stable O-glycoside
analogues, which can be utilized as enzyme inhibitors in various
biochemical studies.4

In general, thioglycoside derivatives are synthesized by the
reaction of a peracetylated sugar with a thiol in the presence of a
Lewis acid,5 or by substituting the bromine of an acetobromo-
glucose with a thiolate anion.6 Thioglycosides can also be pre-
pared by treating 1-thiosugars with an electrophile like alkyl
halides.7 All of these procedures require multistep reactions
including protection and deprotection of the hydroxy groups.
Direct methods for preparation of thioglycosides from hemiace-
tals have been demonstrated in trifluoroacetic acid. However,
these methods show poor selectivity concerning the anomeric
configuration and are accompanied by the formation of dithio-
acetals as by-products.8

In a series of our investigation of the direct activation of
unprotected sugars,9 we have recently reported the synthesis of
1,6-anhydrosugars10 via an intramolecular dehydration reaction
in aqueous media by using 2-chloro-1,3-dimethylimidazolinium
chloride (DMC).11 The reaction proceeds via a reactive inter-
mediate that is formed as a result of a preferential attack of
the anomeric hydroxy group toward DMC.12 Then, an intramo-
lecular nucleophilic attack of the 6-hydroxy group to the anome-
ric carbon gives rise to the 1,6-anhydrosugar.

We postulated that if the reaction is carried out in the pres-
ence of a thiol, a direct introduction of a thioaryl group to the
anomeric carbon would be possible, affording the corresponding
1-thioglycoside. The present paper describes a DMC-mediated
intermolecular dehydration reaction between the anomeric
hydroxy group of unprotected sugars and aromatic thiols to give
the corresponding aryl 1-thioglycosides.

It was predicted that more than 2 equivalents of base would
be necessary to scavenge hydrogen chloride liberated and to ac-
tivate a hydroxy group in the course of the reaction. We screened
various bases as well as their equivalency using D-glucose as a
model substrate, and finally found that the use of triethylamine

(Et3N) is effective for promotion of the reaction. It was also pre-
dicted that a considerable amount of 1,6-anhydrosugar would be
formed as by-product. Interestingly, the addition of acetonitrile
greatly reduced the formation of 1,6-anhydroglucose, leading
to the preferential formation of thioglycoside.13

Table 1 summarizes the synthesis of various aryl 1-thio-
glycosides by the reaction of unprotected sugars and aromatic
thiols. In case of using benzenethiol, p-toluenethiol, and 4-
methoxybenzenethiol, the corresponding �-thioglycosides were
obtained preferentially (Entries 1–3). When 4-nitrobenzenethiol
and 2-pyridinethiol were reacted with D-glucose in the presence
of DMC, the corresponding thioglycosides having �-configura-
tion were exclusively obtained (Entries 4 and 5). The present
reaction could successfully be applied to disaccharides (Entries
6–9). Cellobiose (�-1,4), laminaribiose (�-1,3), melibiose (�-
1,6) have been transformed to the corresponding 2-pyridyl thio-
glycosides in excellent yields without affecting the inner glyco-
sidic bonds.

The following is a typical procedure for synthesis of thiogly-
coside (Entry 5). DMC was added to a mixture of D-glucose,
Et3N, and 2-pyridinethiol in water/acetonitrile (1/1 (v/v)),
and the reaction mixture was stirred for 1 h at 0 �C. After re-
moving the solvent, the residue was purified by using silica

Table 1. Direct synthesis of aryl thioglycosides from unpro-
tected sugarsa

Entry Sugar 2O/MeCN, 

Temp/°C

RSH (equiv) Yield/%b

(β /α )

1 D-Glucose quant. (6.7/1)

2 D-Glucose 93 (4.5/1)

3 D-Glucose 90 (10/1)

4 D-Glucose 1/1, r.t. (5) 90 (β)

5 D-Glucose 91 (β)

6 4/1, 0 quant.(β)

7 4/1, 0 quant.(β)

8 4/1, 0 quant.(β)

9 Melibiose quant.(β)
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aThe reactions were carried out using 3 equiv of DMC and 10
equiv of Et3N. The reaction time: 1 h. bDetermined by 1HNMR
by comparing the integrals of the anomeric proton of the product
and that of unprotected sugar in D2O.
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gel column chromatography to give 2-pyridyl 1-thio-�-D-gluco-
pyranoside.

The 1HNMR of the product showed a signal around 5 ppm
(J1;2 ¼ 10Hz) derived from the anomeric proton. The large cou-
pling constant clearly indicated that the anomeric configuration
of the product was �-type. A signal of anomeric carbon around
87 ppm in the 13CNMR supported the formation of S-glycosidic
bonds.14 One of the characteristic features of the present reaction
is that thioglycosides are produced directly from hemiacetals. It
is therefore predicted that a furanose ring formation would take
place as a side reaction. The NMR spectroscopic study of all
products showed no signals characteristic of aryl 1-thiofurano-
side derivatives at around 83 and 70 ppm ascribable to C4 and
C5, respectively.15

The reaction mechanism involves the initial formation of the
�-glycosyl intermediate 2� as a result of a nucleophilic attack of
�-glucose (1�) to the 2 position of DMC promoted by triethyl-
amine as a general base (Figure 1). The resulting intermediate
is then converted to the 1,2-anhydro intermediate 3 by the neigh-
boring group participation of the 2-hydroxy group enhanced by
the action of triethylamine, producing 1,3-dimethylimidazoli-
din-2-one (DMI). At this stage, two triethylamines are converted
to the corresponding HCl salts. A thiol attacks to the anomeric
carbon of 3 from the � side, giving rise to �-thioglycoside
(4�). On the other hand, �-glucose (1�) that is in equilibrium
with 1� also reacts with DMC to give the corresponding �-gly-
cosyl intermediate 2�, which was attacked by thiol to afford 4�.
The participation of 1,2-anhydrosugar 3 is strongly supported by
the results that 2-deoxy-D-glucose was converted to the corre-
sponding thioglycoside with lower stereoselectivity (�=� ¼
1:6=1) (data not shown).

In conclusion, we achieved a one-step and highly �-selec-
tive synthesis of aryl 1-thioglycosides by using DMC as a dehy-
drative condensing agent under mild reaction conditions. The re-
action requires no protection of the hydroxy groups and proceeds
smoothly in aqueous media. The present method would be a gen-
eral and practical tool for the synthesis of aryl �-thioglycoside
starting from not only unprotected mono- or disacchcrides but
also unprotected oligosaccharides of higher molecular weights.
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Figure 1. Plausible reaction mechanism.
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